"sleeve bearings" Bearing Details:

          Failure modes

          If a bearing is not rotating, maximum load is determined by force that causes plastic deformation of elements or raceways. The identations caused by the elements can concentrate stresses and generate cracks at the components. Maximum load for not or very slowly rotating bearings is called "static" maximum load.

      For a rotating bearing, the dynamic load capacity indicates the load to which the bearing endures 1.000.000 cycles.

     If a bearing is rotating, but experiences heavy load that lasts shorter than one revolution, static max load must be used in computations, since the bearing does not rotate during the maximum load.

     Maximum load
     In general, maximum load on a ball bearing is proportional to outer diameter of the bearing times width of bearing (where width is measured in direction of axle).

       For a bearing to operate properly, it needs to be lubricated. In most cases the lubricant is based on elastohydrodynamic effect (by oil or grease) but working at extreme temperatures dry lubricated bearings are also available.

      For a bearing to have its nominal lifespan at its nominal maximum load, it must be lubricated with a lubricant (oil or grease) that has at least the minimum dynamic viscosity (usually denoted with the Greek letter ) recommended for that bearing.

      The recommended dynamic viscosity is inversely proportional to diameter of bearing.
The recommended dynamic viscosity decreases with rotating frequency. As a rough indication: for less than 3000 RPM, recommended viscosity increases with factor 6 for a factor 10 decrease in speed, and for more than 3000 RPM, recommended viscosity decreases with factor 3 for a factor 10 increase in speed.

     For a bearing where average of outer diameter of bearing and diameter of axle hole is 50 mm, and that is rotating at 3000 RPM, recommended dynamic viscosity is 12 mm²/s.
Note that dynamic viscosity of oil varies strongly with temperature: a temperature increase of 50–70 °C causes the viscosity to decrease by factor 10.

     If the viscosity of lubricant is higher than recommended, lifespan of bearing increases, roughly proportional to square root of viscosity. If the viscosity of the lubricant is lower than recommended, the lifespan of the bearing decreases, and by how much depends on which type of oil being used. For oils with EP ('extreme pressure') additives, the lifespan is proportional to the square root of dynamic viscosity, just as it was for too high viscosity, while for ordinary oil's lifespan is proportional to the square of the viscosity if a lower-than-recommended viscosity is used.

        Lubrication can be done with a grease, which has advantages that grease is normally held within the bearing releasing the lubricant oil as it is compressed by the balls. It provides a protective barrier for the bearing metal from the environment, but has disadvantages that this grease must be replaced periodically, and maximum load of bearing decreases (because if bearing gets too warm, grease melts and runs out of bearing). Time between grease replacements decreases very strongly with diameter of bearing: for a 40 mm bearing, grease should be replaced every 5000 working hours, while for a 100 mm bearing it should be replaced every 500 working hours.

       Lubrication can also be done with an oil, which has advantage of higher maximum load, but needs some way to keep oil in bearing, as it normally tends to run out of it. For oil lubrication it is recommended that for applications where oil does not become warmer than 50 °C, oil should be replaced once a year, while for applications where oil does not become warmer than 100 °C, oil should be replaced 4 times per year. For car engines, oil becomes 100 °C but the engine has an oil filter to continually improve oil quality; therefore, the oil is usually changed less frequently than the oil in bearings.

Relative Products :