"sleeve bearings"

      Direction of load
      Most bearings are meant for supporting loads perpendicular to axle ("radial loads"). Whether they can also bear axial loads, and if so, how much, depends on the type of bearing. Thrust bearings (commonly found on lazy susans) are specifically designed for axial loads.[3]
For single-row deep-groove ball bearings, SKF's documentation says that maximum axial load is circa 50% of maximum radial load, but it also says that "light" and/or "small" bearings can take axial loads that are 25% of maximum radial load.

      For single-row edge-contact ball bearings, axial load can be circa 2 times max radial load, and for cone-bearings maximum axial load is between 1 and 2 times maximum radial load.[3]
If both axial and radial loads are present, they can be added vectorially, to result in total load on bearing, which in combination with nominal maximum load can be used to predict lifespan.[3] However, in order to correctly predict the rating life of ball bearings the ISO/TS 16281 should be used with the help of a calculation software.

     Avoiding undesirable axial load
     The part of a bearing that rotates (either axle hole or outer circumference) must be fixed, while for a part that does not rotate this is not necessary (so it can be allowed to slide). If a bearing is loaded axially, both sides must be fixed.

      If an axle has two bearings, and temperature varies, axle shrinks or expands, therefore it is not admissible for both bearings to be fixed on both their sides, since expansion of axle would exert axial forces that would destroy these bearings. Therefore, at least one of bearings must be able to slide.

      A 'freely sliding fit' is one where there is at least a 4 µm clearance, presumably because surface-roughness of a surface made on a lathe is normally between 1.6 and 3.2 µm.[3]

     Bearings can withstand their maximum load only if the mating parts are properly sized. Bearing manufacturers supply tolerances for the fit of the shaft and the housing so that this can be achieved. The material and hardness may also be specified.

      Fittings that are not allowed to slip are made to diameters that prevent slipping and consequently the mating surfaces cannot be brought into position without force. For small bearings this is best done with a press because tapping with a hammer damages both bearing and shaft, while for large bearings the necessary forces are so great that there is no alternative to heating one part before fitting, so that thermal expansion allows a temporary sliding fit.

       Avoiding torsional loads
      If a shaft is supported by two bearings, and the center-lines of rotation of these bearings are not the same, then large forces are exerted on the bearing that may destroy it. Some very small amount of misalignment is acceptable, and how much depends on type of bearing. For bearings that are specifically made to be 'self-aligning', acceptable misalignment is between 1.5 and 3 degrees of arc. Bearings that are not designed to be self-aligning can accept misalignment of only 2–10 minutes of arc.


      In general, ball bearings are used in most applications that involve moving parts. Some of these applications have specific features and requirements:
Hard drive bearings used to be highly spherical, and were said to be the best spherical manufactured shapes, but this is no longer true, and more and more are being replaced with fluid bearings.

        German ball bearing factories were often a target of allied aerial bombings during World War II; such was the importance of the ball bearing to the German war industry.
In horology, the company Jean Lassale designed a watch movement that used ball bearings to reduce the thickness of the movement. Using 0.20 mm balls, the Calibre 1200 was only 1.2 mm thick, which still is the thinnest mechanical watch movement.

       Aerospace bearings are used in many applications on commercial, private and military aircraft including pulleys, gearboxes and jet engine shafts. Materials include M50 tool steel (AMS6491), Carbon chrome steel (AMS6444), the corrosion resistant AMS5930, 440C stainless steel, silicon nitride (ceramic) and titanium carbide-coated 440C.

     Skateboard wheels each contain two bearings, which are subject to both axial and radial time-varying loads. Most commonly bearing 608-2Z is used (a deep groove ball bearing from series 60 with 8 mm bore diameter)
Yo-Yos, there are ball bearings in the center of many new, ranging from beginner to professional or competition grade Yo-Yos.


    Main article: History of bearings
Although roller bearings had been developed since ancient times, the first recorded patent on ball bearings was awarded to Jules Suriray, a Parisian bicycle mechanic, on 3 August 1869. The bearings were then fitted to the winning bicycle ridden by James Moore in the world's first bicycle road race, Paris-Rouen, in November 1869.[6]
Ball bearings were first produced in Europe so they were standardized to metric dimensions. American manufacturers came along later so they produced ball bearings in metric dimensions prior to the early-1990s.[1]

LAST:"sleeve bearings"NEXT:timken wheel bearings

Related Article